801 research outputs found

    Color television study Final report, Nov. 1965 - Mar. 1966

    Get PDF
    Color television camera for transmission from lunar and earth orbits and lunar surfac

    Identifying Young Brown Dwarfs Using Gravity-Sensitive Spectral Features

    Full text link
    We report the initial results of the Brown Dwarf Spectroscopic Survey Gravity Project, to study gravity sensitive features as indicators of youth in brown dwarfs. Low-resolution (R~2000) J-band and optical (R~1000) observations using NIRSPEC and LRIS at the W.M. Keck Observatory reveal transitions of TiO, VO, K I, Na I, Cs I, Rb I, CaH, and FeH. By comparing these features in late-type giants and in old field dwarfs we show that they are sensitive to the gravity (g = GM/R^2) of the object. Using low-gravity spectral signatures as age indicators, we observed and analyzed J-band and optical spectra of two young brown dwarfs, G 196-3B (20-300 Myr) and KPNO Tau-4 (1-2 Myr), and two possible low mass brown dwarfs in the sigma Orionis cluster (3-7 Myr). We report the identification of the phi bands of TiO near 1.24 microns and the A-X band of VO near 1.18 microns together with extremely weak J-band lines of K I in KPNO-Tau4. This is the first detection of TiO and VO in the J-band in a sub-stellar mass object. The optical spectrum of KPNO-Tau4 exhibits weak K I and Na I lines, weak absorption by CaH, and strong VO bands, also signatures of a lower gravity atmosphere. G 196-3B shows absorption features in both wavelength regions like those of KPNO-Tau4 suggesting that its age and mass are at the lower end of published estimates. Whereas sigma Ori 51 appears to be consistent with a young sub-stellar object, sigma Ori 47 shows signatures of high gravity most closely resembling an old L1.5/L0, and can not be a member of the sigma Orionis cluster.Comment: 14 pages, 4 figures. To appear in the January 10, 2004 issue of the Astrophysical Journa

    HD 77407 and GJ 577: two new young stellar binaries detected with the Calar Alto Adaptive Optics system ALFA

    Get PDF
    We present the first results from our search for close stellar and sub-stellar companions to young nearby stars on the northern sky. Our infrared imaging observations are obtained with the 3.5 m Calar Alto telescope and the AO system ALFA. With two epoch observations which were separated by about one year, we found two co-moving companion candidates, one close to HD 77407 and one close to GJ 577. For the companion candidate near GJ 577, we obtained an optical spectrum showing spectral type M4.5; this candidate is a bound low-mass stellar companion confirmed by both proper motion and spectroscopy. We estimate the masses for HD 77407 B and GJ 577 B to be ~0.3 to 0.5 Msun and ~0.16 to 0.2 Msun, respectively. Compared to Siess al.(2000) models, each of the two pairs appears co-eval with HD 77407 A,B being 10 to 40 Myrs old and GJ 577 A,B being older than 100 Myrs. We also took multi-epoch high-resolution spectra of HD 77407 to search for sub-stellar companions, but did not find any with 3 Mjup as upper mass (msin(i)) limit (for up to 4 year orbits); however, we detected a long-term radial velocity trend in HD 77407 A, consistent with a ~ 0.3 Msun companion at ~ 50 AU separation, i.e. the one detected by the imaging. Hence, HD 77407 B is confirmed to be a bound companion to HD 77407 A. We also present limits for undetected, but detectable companions using a deep image of HD 77407 A and B, also observed with the Keck NIRC2 AO system; any brown dwarfs were detectable outside of 0.5 arcsec (17 AU at HD 77407), giant planets with masses from ~ 6.5 to 12 Mjup were detectable at > 1.5 arcsec.Comment: in pres

    Discovery of a Very Young Field L Dwarf, 2MASS J01415823-4633574

    Full text link
    While following up L dwarf candidates selected photometrically from the Two Micron All Sky Survey, we uncovered an unusual object designated 2MASS J01415823-4633574. Its optical spectrum exhibits very strong bands of vanadium oxide but abnormally weak absorptions by titanium oxide, potassium, and sodium. Morphologically such spectroscopic characteristics fall intermediate between old, field early-L dwarfs (log(g)~5) and very late M giants (log(g)~0), leading us to favor low gravity as the explanation for the unique spectral signatures of this L dwarf. Such a low gravity can be explained only if this L dwarf is much lower in mass than a typical old field L dwarf of similar temperature and is still contracting to its final radius. These conditions imply a very young age. Further evidence of youth is found in the near-infrared spectrum, including a triangular-shaped H-band continuum reminiscent of young brown dwarf candidates discovered in the Orion Nebula Cluster. Using the above information along with comparisons to brown dwarf atmospheric and interior models, our current best estimate is that this L dwarf has an age of 1-50 Myr and a mass of 6-25 M_Jupiter. The location of 2MASS 0141-4633 on the sky coupled with a distance estimate of ~35 pc and the above age estimate suggests that this object may be a brown dwarf member of either the 30-Myr-old Tucana/Horologium Association or the ~12-Myr-old beta Pic Moving Group.Comment: Accepted for publication in the 10 March 2006 issue (volume 639) of the Astrophysical Journa

    An accurate distance to 2M1207Ab

    Get PDF
    In April 2004 the first image was obtained of a planetary mass companion (now known as 2M1207 b) in orbit around a self-luminous object different from our own Sun (the young brown dwarf 2MASSW J1207334-393254, hereafter 2M1207 A). 2M1207 b probably formed via fragmentation and gravitational collapse, offering proof that such a mechanism can form bodies in the planetary mass regime. However, the predicted mass, luminosity, and radius of 2M1207 b depend on its age, distance, and other observables such as effective temperature. To refine our knowledge of the physical properties of 2M1207 b and its nature, we obtained an accurate determination of the distance to the 2M1207 A and b system by measurements of its trigonometric parallax at the milliarcsec level. With the ESO NTT/SUSI2 telescope, in 2006 we began a campaign of photometric and astrometric observations to measure the trigonometric parallax of 2M1207 A. An accurate distance (52.4±1.152.4\pm 1.1 pc) to 2M1207A was measured. From distance and proper motions we derived spatial velocities fully compatible with TWA membership. With this new distance estimate, we discuss three scenarios regarding the nature of 2M1207 b: (1) a cool (1150±1501150\pm150 K) companion of mass 4±14\pm1 MJup_{\rm{Jup}}, (2) a warmer (1600±1001600\pm100 K) and heavier (8±28\pm2 MJup_{\rm{Jup}}) companion occulted by an edge-on circum-secondary disk or (3) a hot protoplanet collision afterglow.Comment: 5 pages, 3 figures, accepted for publication as letter in A&A, 6/11/200

    Orbital motion of the young brown dwarf companion TWA 5 B

    Full text link
    With more adaptive optics images available, we aim at detecting orbital motion for the first time in the system TWA 5 A+B. We measured separation and position angle between TWA 5 A and B in each high-resolution image available and followed their change in time, because B should orbit around A. The astrometric measurement precision is about one milli arc sec. With ten year difference in epoch, we can clearly detect orbital motion of B around A, a decrease in separation by ~ 0.0054 arc sec per year and a decrease in position angle by ~ 0.26 degrees per year. TWA 5 B is a brown dwarf with ~ 25 Jupiter masses (Neuh\"auser et al. 2000), but having large error bars (4 to 145 Jupiter masses, Neuh\"auser et al. 2009). Given its large projected separation from the primary star, ~ 86 AU, and its young age ~ 10 Myrs), it has probably formed star-like, and would then be a brown dwarf companion. Given the relatively large changes in separation and position angle between TWA 5 A and B, we can conclude that they orbit around each other on an eccentric orbit. Some evidence is found for a curvature in the orbital motion of B around A - most consistent with an elliptic (e=0.45) orbit. Residuals around the best-fit ellipse are detected and show a small-amplitude (~ 18 mas) periodic sinusoid with ~ 5.7 yr period, i.e., fully consistent with the orbit of the inner close pair TWA 5 Aa+b. Measuring these residuals caused by the photocenter wobble - even in unresolved images - can yield the total mass of the inner pair, so can test theoretical pre-main sequence models.Comment: 6 pages, 4 figures, accepted for publication in A&A; corrected typo in amplitude below Fig.

    Improved Algorithms for Approximate String Matching (Extended Abstract)

    Get PDF
    The problem of approximate string matching is important in many different areas such as computational biology, text processing and pattern recognition. A great effort has been made to design efficient algorithms addressing several variants of the problem, including comparison of two strings, approximate pattern identification in a string or calculation of the longest common subsequence that two strings share. We designed an output sensitive algorithm solving the edit distance problem between two strings of lengths n and m respectively in time O((s-|n-m|)min(m,n,s)+m+n) and linear space, where s is the edit distance between the two strings. This worst-case time bound sets the quadratic factor of the algorithm independent of the longest string length and improves existing theoretical bounds for this problem. The implementation of our algorithm excels also in practice, especially in cases where the two strings compared differ significantly in length. Source code of our algorithm is available at http://www.cs.miami.edu/\~dimitris/edit_distanceComment: 10 page
    corecore